Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.
Couvre les bases des statistiques exploratoires, y compris les variables, les quantiles, la tendance centrale, la dispersion, les valeurs aberrantes et la robustesse.
Explore la régression quantile pour la prévision des prix de l'électricité en utilisant des données de séries chronologiques, la régularisation et l'astuce du noyau.
Explore les générateurs de nombres aléatoires, y compris les algorithmes Pseudo-RNG, les propriétés, les méthodes d'évaluation et les tests d'indépendance.