Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.
Explore les valeurs extrêmes dans les variables aléatoires, les applications dans les facteurs environnementaux, la modélisation de la fiabilité, la distribution maximale des blocs et la distribution générale de la valeur extrême.
S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.