In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
The statements on the BIBO stability of continuoustime convolution systems found in engineering textbooks are often either too vague (because of lack of hypotheses) or mathematically incorrect. What is more troubling is that they usually exclude the identi ...
We consider the problem of finding an optimal transport plan between an absolutely continuous measure and a finitely supported measure of the same total mass when the transport cost is the unsquared Euclidean distance. We may think of this problem as close ...
We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. We prove quenched strong local equilibrium at subcritica ...
We study the regularity of the probability density function of the supremum of the solution to the linear stochastic heat equation. Using a general criterion for the smoothness of densities for locally nondegenerate random variables, we establish the smoot ...
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
We study actions of groups by orientation preserving homeomorphisms on R (or an interval) that are minimal, have solvable germs at +/-infinity and contain a pair of elements of a certain dynamical type. We call such actions coherent. We establish that such ...
We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. For any given environment satisfying suitable averaging ...
We provide sharp conditions for the finiteness and the continuity of multimarginal optimal transport with repulsive cost, expressed in terms of a suitable concentration property of the measure. To achieve this result, we analyze the Kantorovich potentials ...
In this article, we establish novel decompositions of Gaussian fields taking values in suitable spaces of generalized functions, and then use these decompositions to prove results about Gaussian multiplicative chaos. We prove two decomposition theorems. Th ...