Rapport gyromagnétiqueEn physique, le rapport gyromagnétique est le rapport entre le moment magnétique et le moment cinétique d'une particule. Son unité dans le Système international est le coulomb par kilogramme (C⋅kg). En pratique, on donne souvent , exprimé en mégahertz par tesla (MHz⋅T), essentiel en RMN. Tout système libre possédant un rapport gyromagnétique constant, (un atome d'hydrogène par exemple), placé dans un champ magnétique non aligné avec le moment magnétique du système, sera entraîné dans un mouvement de précession de Larmor à la fréquence telle que : C'est pourquoi les valeurs de sont plus souvent données que .
Représentation d'interactionLa représentation d'interaction ou représentation de Dirac de la mécanique quantique est une manière de traiter les problèmes dépendant du temps. Dans la représentation d'interaction, on applique les hypothèses suivantes : On considère un hamiltonien ayant la forme suivante : où est constant dans le temps et décrit une interaction perturbative qui peut dépendre du temps. Les états propres sont dépendants du temps Les opérateurs sont aussi dépendants du temps La dynamique des états est décrite suivant la représentation de Schrödinger tandis que la dynamique des opérateurs est décrite suivant la représentation de Heisenberg.
D'alembertienLe d'alembertien, ou opérateur d'alembertien, est la généralisation du concept du laplacien dans une métrique minkowskienne. Il apparaît en particulier en électromagnétisme pour décrire la propagation des ondes électromagnétiques ainsi que dans l'équation de Klein-Gordon. Le d'alembertien est ainsi désigné à la suite de Hendrik Lorentz (-). Son éponyme est Jean Le Rond d'Alembert (-) qui l'a découvert en .
Gauge covariant derivativeIn physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity. If a physical theory is independent of the choice of local frames, the group of local frame changes, the gauge transformations, act on the fields in the theory while leaving unchanged the physical content of the theory.
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.
Théorie de jauge sur réseauLa théorie de jauge sur réseau est une branche de la physique théorique, consistant à étudier les propriétés d'une théorie de jauge sur un modèle discret d’espace-temps, caractérisé mathématiquement comme un réseau. Les théories de jauge jouent un rôle fondamental en physique des particules, puisqu'elles unifient les théories actuellement reçues sur les particules élémentaires : l’électrodynamique quantique, la chromodynamique quantique (QCD) et le « Modèle standard ».
BispinorIn physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime.
Structure constantsIn mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
Quantization of the electromagnetic fieldThe quantization of the electromagnetic field means that an electromagnetic field consists of discrete energy parcels, photons. Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is Planck's constant and ν is the wave frequency. In 1927 Paul A. M.
Functional integrationFunctional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields. In an ordinary integral (in the sense of Lebesgue integration) there is a function to be integrated (the integrand) and a region of space over which to integrate the function (the domain of integration).