Résumé
In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors). Therefore, the structure constants can be used to specify the product operation of the algebra (just like a matrix defines a linear operator). Given the structure constants, the resulting product is obtained by bilinearity and can be uniquely extended to all vectors in the vector space, thus uniquely determining the product for the algebra. Structure constants are used whenever an explicit form for the algebra must be given. Thus, they are frequently used when discussing Lie algebras in physics, as the basis vectors indicate specific directions in physical space, or correspond to specific particles (recall that Lie algebras are algebras over a field, with the bilinear product being given by the Lie bracket, usually defined via the commutator). Given a set of basis vectors for the underlying vector space of the algebra, the product operation is uniquely defined by the products of basis vectors: The structure constants or structure coefficients are just the coeffiecients of in the same basis: Otherwise said they are the coefficients that express as linear combination of the basis vectors . The upper and lower indices are frequently not distinguished, unless the algebra is endowed with some other structure that would require this (for example, a pseudo-Riemannian metric, on the algebra of the indefinite orthogonal group so(p,q)). That is, structure constants are often written with all-upper, or all-lower indexes. The distinction between upper and lower is then a convention, reminding the reader that lower indices behave like the components of a dual vector, i.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (31)