Concepts associés (19)
Homologie singulière
En topologie algébrique, l'homologie singulière est une construction qui permet d'associer à un espace topologique X une suite homologique de groupes abéliens libres ou de modules. Cette association est un invariant topologique non complet, c'est-à-dire que si deux espaces sont homéomorphes alors ils ont mêmes groupes d'homologie singulière en chaque degré mais que la réciproque est fausse. Le théorème de Stokes appliqué à des formes fermées donne des intégrales nulles. Cependant, il se fonde sur une hypothèse cruciale de compacité.
Théorie de l'homotopie
La théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Nombre de Betti
En mathématiques, et plus précisément en topologie algébrique, les nombres de Betti sont des invariants topologiques, c'est-à-dire qu'ils aident à distinguer différents espaces topologiques. Ils forment une suite dont chaque terme est un entier naturel ou +∞. Pour les espaces « raisonnables » comme les variétés compactes et les complexes simpliciaux ou CW-complexes finis, ils sont tous finis, et nuls à partir d'un certain rang (au-delà de la dimension de l'espace). Henri Poincaré les a nommés ainsi en l'honneur d'Enrico Betti.
Complexe différentiel
En mathématiques, un complexe différentiel est un groupe abélien (voire un module), ou plus généralement un objet d'une catégorie abélienne, muni d'un endomorphisme de carré nul (appelé différentielle ou bord), c'est-à-dire dont l' est contenue dans le noyau. Cette condition permet de définir son homologie, qui constitue un invariant essentiel en topologie algébrique. Un complexe différentiel peut être gradué pour constituer un complexe de chaines ou de cochaines).
Recouvrement (mathématiques)
Un recouvrement d'un ensemble E est une famille (X) d'ensembles dont l'union contient E, c'est-à-dire telle que tout élément de E appartient à au moins l'un des X. Certains auteurs imposent de plus que les X soient des sous-ensembles de E. Dans ce cas, les X forment un recouvrement de E (si et) seulement si leur union est égale à E, et une partition de E s'ils sont de plus non vides et deux à deux disjoints. Par exemple, pour E = {1, 2, 3, 4}, la famille (∅, {1, 2, 3}, {3, 4}) n'est qu'un recouvrement alors que ({1, 2}, {3, 4}) est une partition.
Transformation naturelle
En théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
N-squelette
vignette|Le diagramme de Schlegel permet de visualiser le 1-squelette de cet hexadécachore, polytope de dimension 4. En mathématiques, on définit le n-squelette, ou squelette d'ordre n de certains objets construits avec des blocs des différentes dimensions : les polytopes de la géométrie affine, les CW-complexes de la topologie algébrique. Le squelette d'ordre 0 est formé des sommets, celui d'ordre 1 des sommets et des arêtes, et de façon générale le squelette d'ordre n est formé de la réunion des cellules d'ordre inférieur ou égal à n.
Topologie combinatoire
En mathématiques, la topologie combinatoire est l'ancêtre de la topologie algébrique. À l'époque, les invariants topologiques (par exemple les nombres de Betti) étaient construits à l'aide de décompositions combinatoires des espaces, comme les décompositions simpliciales. Le changement de nom de la discipline reflète un changement de nature dans les invariants construits, effectué dans les années 1930 par Heinz Hopf, Leopold Vietoris et Walther Mayer. On attribue parfois à Emmy Noether une influence initiale dans cette évolution.
Simplicial homology
In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.