BirapportLe birapport, ou rapport anharmonique selon la dénomination de Michel Chasles est un outil puissant de la géométrie, en particulier la géométrie projective. La notion remonte à Pappus d'Alexandrie, mais son étude systématique est réalisée en 1827 par Möbius. thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : . thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : .
Fuchsian groupIn mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
Connexité simpleEn topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.
Disque (géométrie)vignette|Disque. Un disque est une figure géométrique dans un plan (ou plutôt une surface plane) formée des points situés à une distance inférieure ou égale, à une valeur donnée R d'un point O nommé centre. R est le rayon du disque. La frontière du disque est un cercle de centre O et de rayon R appelé Périmètre. Le disque est fermé si la frontière est incluse, et ouvert si elle n'en fait pas partie. Dans le langage courant, on appelle disque un objet plat circulaire, qui est plus exactement un cylindre de révolution d'épaisseur faible devant son rayon.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.
Théorème d'uniformisation de RiemannEn mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). Théorème d'uniformisation Transformation conforme Catégorie:Surface
Métrique de PoincaréEn mathématiques, et plus précisément en géométrie différentielle, la métrique de Poincaré, due à Henri Poincaré, est le tenseur métrique décrivant une surface de courbure négative constante. C'est la métrique naturelle utilisée pour des calculs en géométrie hyperbolique ou sur des surfaces de Riemann.