Le birapport, ou rapport anharmonique selon la dénomination de Michel Chasles est un outil puissant de la géométrie, en particulier la géométrie projective. La notion remonte à Pappus d'Alexandrie, mais son étude systématique est réalisée en 1827 par Möbius. thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : . thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : . Si A, B, C et D sont quatre points distincts d'une droite (d), le birapport, ou rapport anharmonique de ces quatre points est formé à partir des rapports des mesures algébriques des segments qu'ils découpent de la manière suivante : Définir des mesures algébriques demande ordinairement d'introduire un repère sur la droite (d) ; mais les rapports de mesures algébriques sont en fait indépendants du repère introduit. La notion de birapport a donc un sens en géométrie affine, c'est-à-dire sans référence à une structure euclidienne. Si on utilise des unités de longueur, le birapport est une grandeur indépendante du choix d'unité. Il n'existe pas de notation universelle pour le birapport : on trouve par exemple les écritures De par son expression, le birapport vérifie un certain nombre de propriétés de symétrie lorsqu'on permute les points : échanger A et B d'une part, C et D d'autre part est sans effet. De même si on échange le couple (A, B) et le couple (C, D). On peut donc considérer le birapport comme attaché à la paire de paires . Lorsqu'on ne précise pas l'ordre des points sur la droite, selon les permutations, le birapport ne prend pas 4! = 24 valeurs mais seulement six : Les fonctions correspondantes (telles que ) forment un groupe isomorphe au groupe symétrique . Cela s'explique de la façon suivante : les permutations (autre que l'identité) qui laissent le birapport invariant sont (on les a notées par leur décomposition en produit de cycles à support disjoints). Elles forment un sous-groupe normal de , isomorphe au groupe de Klein, et le groupe des valeurs du birapport est donc le groupe quotient de par ce sous-groupe normal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.