In statistics and econometrics, a cross-sectional regression is a type of regression in which the explained and explanatory variables are all associated with the same single period or point in time. This type of cross-sectional analysis is in contrast to a time-series regression or longitudinal regression in which the variables are considered to be associated with a sequence of points in time. For example, in economics a regression to explain and predict money demand (how much people choose to hold in the form of the most liquid assets) could be conducted with either cross-sectional or time series data. A cross-sectional regression would have as each data point an observation on a particular individual's money holdings, income, and perhaps other variables at a single point in time, and different data points would reflect different individuals at the same point in time. In contrast, a regression using time series would have as each data point an entire economy's money holdings, income, etc. at one point in time, and different data points would be drawn on the same economy but at different points in time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.