Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Informatiquealt=Salle informatique de la bibliothèque d'Art et d'Archéologie de Genève|vignette|Salle informatique de la bibliothèque d'Art et d'Archéologie de Genève (2017). L'informatique est un domaine d'activité scientifique, technique, et industriel concernant le traitement automatique de l'information numérique par l'exécution de programmes informatiques hébergés par des dispositifs électriques-électroniques : des systèmes embarqués, des ordinateurs, des robots, des automates Ces champs d'application peuvent être séparés en deux branches : théorique : concerne la définition de concepts et modèles ; pratique : s'intéresse aux techniques concrètes de mise en œuvre.
Isabelle (logiciel)The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Assistant de preuveEn informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets.
Programmation logiqueLa programmation logique est une forme de programmation qui définit les applications à l'aide : d'une base de faits : ensemble de faits élémentaires concernant le domaine visé par l'application, d'une base de règles : règles de logique associant des conséquences plus ou moins directes à ces faits, d'un moteur d'inférence (ou démonstrateur de théorème ) : exploite ces faits et ces règles en réaction à une question ou requête. Cette approche se révèle beaucoup plus souple que la définition d'une succession d'instructions que l'ordinateur exécuterait.
TautologieLa tautologie (du grec ancien ταὐτολογία, composé de ταὐτό, « la même chose », et λέγω, « dire » : le fait de redire la même chose) est une phrase ou un effet de style ainsi tourné que sa formulation ne puisse être que vraie. La tautologie est apparentée au truisme (ou lapalissade) et au pléonasme. En logique mathématique, le mot « tautologie » désigne une proposition toujours vraie selon les règles du calcul propositionnel. On utilise aussi l'adjectif tautologique en mathématiques pour désigner des structures qui émergent naturellement de la définition de certains objets.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.