CalorimétrieLa calorimétrie est la partie de la thermodynamique qui a pour objet le calcul et la mesure des chaleurs. Pour que la chaleur soit accessible par le calcul, il est nécessaire de l'identifier à la variation d'une fonction d'état, ce qui n'est pas possible dans un cas général. On choisit des conditions particulières dans lesquelles cette identification est possible : par exemple à pression constante, et dans ce cas les chaleurs mises en jeu au sein du calorimètre sont égales à la variation de l'enthalpie ΔH = QP, ou à volume constant dans une bombe calorimétrique, et dans ce cas les chaleurs mises en jeu sont égales à la variation de l'énergie interne ΔU = QV.
Extensivité et intensivité (physique)Les grandeurs extensives et intensives sont des catégories de grandeurs physiques d'un système physique : une propriété est « intensive » si sa valeur ne dépend pas de la taille du système (en particulier, si sa valeur est la même en tout point d'un système homogène) : par exemple, la température ou la pression ; une propriété est « extensive » si elle est proportionnelle à une quantité caractéristique du système : par exemple, la masse ou le volume.
Processus thermodynamiqueUn processus thermodynamique, ou une transformation thermodynamique, est une transformation (ou une série de transformations) chimique ou physique d’un système partant d’un état d’équilibre initial pour aboutir à un état d’équilibre final.
Exact differentialIn multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in multivariable calculus). An exact differential is sometimes also called a total differential, or a full differential, or, in the study of differential geometry, it is termed an exact form.
Relations de MaxwellEn thermodynamique, les relations de Maxwell sont un ensemble de relations entre dérivées partielles de diverses grandeurs obtenues par l'application du théorème de Schwarz aux potentiels thermodynamiques. Elles portent le nom de James Clerk Maxwell qui les publia en 1871. Pour un système entièrement décrit par les grandeurs pression , température , entropie et volume , on retient généralement un ensemble de quatre relations relatives à l'énergie interne, à l'enthalpie, à l'énergie libre et à l'enthalpie libre : Néanmoins les relations de Maxwell sont généralisables à tous les systèmes thermodynamiques notamment chimiques, électriques et électrochimiques.
Premier principe de la thermodynamiqueSelon le premier principe de la thermodynamique, lors de toute transformation, il y a conservation de l'énergie. Dans le cas des systèmes thermodynamiques fermés, il s'énonce de la manière suivante : Au cours d'une transformation quelconque d'un système fermé, la variation de son énergie est égale à la quantité d'énergie échangée avec le milieu extérieur, par transfert thermique (chaleur) et transfert mécanique (travail).
Fundamental thermodynamic relationIn thermodynamics, the fundamental thermodynamic relation are four fundamental equations which demonstrate how four important thermodynamic quantities depend on variables that can be controlled and measured experimentally. Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H (enthalpy).
Système ferméUn système fermé est un système . Le terme renvoie souvent à un système idéalisé où la clôture est parfaite. En réalité, aucun système ne peut être complètement fermé ; il y a seulement divers degrés de fermeture. En thermodynamique, un système fermé peut échanger de l'énergie sous forme de chaleur et/ou de travail, mais pas de la matière, avec ses environnements. En revanche un système isolé ne peut pas échanger de chaleur, de travail ou de la matière avec son environnement, tandis qu'un système ouvert peut échanger de la chaleur, du travail et de la matière.
Free entropyA thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability.
Grand potentialThe grand potential or Landau potential or Landau free energy is a quantity used in statistical mechanics, especially for irreversible processes in open systems. The grand potential is the characteristic state function for the grand canonical ensemble. Grand potential is defined by where U is the internal energy, T is the temperature of the system, S is the entropy, μ is the chemical potential, and N is the number of particles in the system.