Résumé
Les mathématiques expérimentales constituent une approche dans laquelle des calculs (essentiellement réalisés actuellement par ordinateur) sont utilisés pour explorer les propriétés d'objets mathématiques, et découvrir des relations et des régularités entre ces objets. Cette approche des mathématiques a toujours existé : les textes les plus anciens, comme ceux des mathématiques mésopotamiennes, sont formés typiquement de listes d'exemples numériques illustrant des identités algébriques. Mais à partir du , les mathématiciens ont développé un style de présentation formel et abstrait, amenant à ce que les exemples ayant conduit à la formulation du théorème général ne soient plus publiés, et soient généralement oubliés (bien que l'on connaisse quelques exceptions, souvent extraits de la correspondance de mathématiciens entre eux, comme l'approche ayant conduit Gauss à la formulation du théorème des nombres premiers). En tant que domaine d'étude séparé, les mathématiques expérimentales sont réapparues au , l'invention des ordinateurs augmentant considérablement le domaine des calculs possibles, ainsi que leur vitesse et leur précision. Un exemple significatif de ces progrès est la découverte en 1995 de la formule BBP donnant les chiffres (binaires) de π. Cette formule fut découverte, non par une analyse théorique, mais par explorations numériques, une preuve rigoureuse de sa validité n'ayant été donnée que par la suite. Les objectifs des mathématiques expérimentales sont : Améliorer l'intuition. Découvrir de nouvelles relations et de nouvelles structures. Utiliser des représentations graphiques clarifiant des concepts. Tester des conjectures, particulièrement pour les réfuter. Explorer des résultats dans le but de construire une démonstration rigoureuse. Remplacer des démonstrations complexes par des calculs susceptibles de vérification automatique.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.