Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.