Le radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international.
Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle.
Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson, les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.
Considérons un secteur angulaire, formé de deux droites concourantes distinctes, et un cercle de rayon r tracé dans un plan contenant ces deux droites, dont le centre est le point d'intersection des droites. Alors, la valeur de l'angle en radians est le rapport entre la longueur L de l'arc de cercle intercepté par les droites et le rayon r.
vignette|Mesure d'un angle en radian
Un angle d'un radian intercepte sur la circonférence de ce cercle un arc d'une longueur égale au rayon. Un cercle complet représente un angle de 2π radians, appelé angle plein.
L'utilisation des radians est impérative lorsque l'on dérive ou intègre une fonction trigonométrique ou encore lorsque l'on utilise un développement limité de cette fonction trigonométrique : en effet, l'angle pouvant se retrouver en facteur, seule la valeur en radians a un sens. De ce fait, le calcul des fonctions trigonométriques par une série de Taylor suppose l'expression des angles en radians, tout comme l'application de la formule d'Euler, qui l'a posée en spécifiant que les angles devaient être mesurés par la longueur en rayons de l'arc qu'ils interceptent, plus d'un siècle avant l'invention du terme radian.
Pour un angle de valeur inférieure à 0,17 radian (soit ~10°), l'erreur est de moins de 1 % ;
Pour un angle de valeur inférieure à 0,05 radian (soit ~3°), l'erreur est de moins de 0,1 %.
Dans le domaine de la topographie, où on traite d'angles faibles, on utilise le mil angulaire, une unité pratique, définie comme l'angle qu'intercepte une longueur de à une distance de .