En géométrie, l'hyperbole unité est l'ensemble des points (x, y) du plan cartésien qui vérifient l'équation implicite x – y = 1. Dans l'étude des groupes orthogonaux indéfinis, l'hyperbole unité forme la base d'une longueur radiale alternative Alors que le cercle unité entoure son centre, l'hyperbole unité nécessite lhyperbole conjuguée y – x = 1 pour le compléter dans le plan. Cette paire d'hyperboles partage les asymptotes et . Lorsque le conjugué de l'hyperbole unité est utilisé, la longueur radiale alternative est L'hyperbole unité est un cas spécial de l'hyperbole équilatère, après une rotation particulière, une translation et une homothétie particulière. Ainsi, son excentricité vaut . L'hyperbole unité trouve des applications où le cercle doit être remplacé par l'hyperbole à des fins de géométrie analytique. Un exemple important est la représentation de l'espace-temps comme un espace pseudo-euclidien. Là, les asymptotes de l'hyperbole unitaire forment un cône de lumière. De plus, l'attention portée aux aires de secteurs hyperboliques par Grégoire de Saint-Vincent a conduit à la fonction logarithme et à la paramétrisation moderne de l'hyperbole par aires de secteurs hyperboliques. Lorsque les notions d'hyperboles conjuguées et d'angles hyperboliques sont comprises, alors les nombres complexes classiques, qui sont construits autour du cercle unitaire, peuvent être remplacés par des nombres construits autour de l'hyperbole unité. On dit généralement que les droites asymptotes d'une courbe convergent vers la courbe. En géométrie algébrique et en théorie des courbes algébriques, il existe une approche différente des asymptotes. La courbe est d'abord interprétée dans le plan projectif en coordonnées homogènes. Alors les asymptotes sont des droites qui sont tangentes à la courbe projective en un point à l'infini, contournant ainsi tout besoin d'un concept de distance et de convergence. Dans un cadre commun sont des coordonnées homogènes avec la droite à l'infini déterminée par l'équation .
Yves Weinand, Nicolas Henry Pierre Louis Rogeau, Pierre Latteur