Concept

Versor

Résumé
In mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor. The collection of versors with quaternion multiplication forms a group, and the set of versors is a 3-sphere in the 4-dimensional quaternion algebra. Hamilton denoted the versor of a quaternion q by the symbol Uq. He was then able to display the general quaternion in polar coordinate form q = Tq Uq, where Tq is the norm of q. The norm of a versor is always equal to one; hence they occupy the unit 3-sphere in H. Examples of versors include the eight elements of the quaternion group. Of particular importance are the right versors, which have angle π/2. These versors have zero scalar part, and so are vectors of length one (unit vectors). The right versors form a sphere of square roots of −1 in the quaternion algebra. The generators i, j, and k are examples of right versors, as well as their additive inverses. Other versors include the twenty-four Hurwitz quaternions that have the norm 1 and form vertices of a 24-cell polychoron. Hamilton defined a quaternion as the quotient of two vectors. A versor can be defined as the quotient of two unit vectors. For any fixed plane Π the quotient of two unit vectors lying in Π depends only on the angle (directed) between them, the same a as in the unit vector–angle representation of a versor explained above. That's why it may be natural to understand corresponding versors as directed arcs that connect pairs of unit vectors and lie on a great circle formed by intersection of Π with the unit sphere, where the plane Π passes through the origin. Arcs of the same direction and length (or, the same, its subtended angle in radians) are equivalent, i.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.