In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix ( is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size. Intuitively, if a real matrix is interpreted as a linear transformation of -dimensional space , the polar decomposition separates it into a rotation or reflection of , and a scaling of the space along a set of orthogonal axes. The polar decomposition of a square matrix always exists. If is invertible, the decomposition is unique, and the factor will be positive-definite. In that case, can be written uniquely in the form , where is unitary and is the unique self-adjoint logarithm of the matrix . This decomposition is useful in computing the fundamental group of (matrix) Lie groups. The polar decomposition can also be defined as where is a symmetric positive-definite matrix with the same eigenvalues as but different eigenvectors. The polar decomposition of a matrix can be seen as the matrix analog of the polar form of a complex number as , where is its absolute value (a non-negative real number), and is a complex number with unit norm (an element of the circle group). The definition may be extended to rectangular matrices by requiring to be a semi-unitary matrix and to be a positive-semidefinite Hermitian matrix. The decomposition always exists and is always unique. The matrix is unique if and only if has full rank. A real square matrix can be interpreted as the linear transformation of that takes a column vector to . Then, in the polar decomposition , the factor is an real orthonormal matrix. The polar decomposition then can be seen as expressing the linear transformation defined by into a scaling of the space along each eigenvector of by a scale factor (the action of ), followed by a rotation of (the action of ). Alternatively, the decomposition expresses the transformation defined by as a rotation () followed by a scaling () along certain orthogonal directions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.