En logique, la forme d'une argumentation déductive est correcte si et seulement si elle est valide et que toutes ses prémisses sont effectivement vraies. En logique formelle, un système logique est correct si on peut lui associer une sémantique (on dit aussi un modèle) qui le justifie. La correction indique donc que les règles d’un tel système mettent en œuvre des raisonnements qui font du sens, puisqu'on peut les interpréter. Le terme de correction peut ici être pris dans son sens de qualité de ce qui est correct. Correct venant de correctus participe passé de corrigo, (redresser, corriger) ; racine elle-même issue regō (diriger, guider, commander), et du préfixe augmentatif cor-, qui intensifie le sens du mot préfixé. On retrouve la même étymologie pour le terme allemand correspondant Korrektheit, où le suffixe heit sert à former des substantifs féminins à partir d’adjectifs, et indiquant la qualité décrite par ceux-ci. Cependant, le terme de correction est parfois confondu avec la cohérence ou la validité, notamment dans des écrits qui les présentent comme la traduction du terme anglais soundness. Celui-ci dérive du germanique sund, qu’on retrouve dans l’allemand Gesund (sain), et Gesundheit, (santé). En anglais, le suffixe -ness joue le même rôle que heit en allemand, il est apposé à un adjectif pour former un nom indiquant une qualité, un état en relation avec l’adjectif. En ce sens il faudrait, suivant cette étymologie, traduire soundness par la santé d’un système formel. En tout état de cause, le terme français idoine pour désigner cette notion est bien correction, comme l'atteste son proche homologue allemand, ou le terme preuve de correction largement employé dans le domaine informatique. La correction se distingue de la cohérence, qui est la propriété d'un système exempt de contradiction. Prenons l’exemple d’une logique dans laquelle on peut écrire les formules de l’arithmétique usuelle.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Publications associées (15)
Personnes associées (3)
Concepts associés (17)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Argumentation
L’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.
Raisonnement déductif
En logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.