Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Projective orthogonal groupIn projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin.
Polytope abstraitEn mathématiques, et plus particulièrement en géométrie discrète, un polytope abstrait est un ensemble partiellement ordonné dont l'ordre reflète les propriétés combinatoires d'un polytope (au sens traditionnel, généralisant les polygones et les polyèdres à un nombre de dimensions quelconque), mais pas les aspects géométriques usuels, tels que les angles ou les distances. On dit qu'un polytope (géométrique) est une réalisation dans un espace à n dimensions (le plus souvent euclidien) du polytope abstrait correspondant.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Plan projectif réelEn géométrie, le plan projectif réel, noté RP ou P(R), est un exemple simple d'espace projectif (le corps des scalaires est constitué des nombres réels et la dimension est 2), permettant d'illustrer les mécanismes fondamentaux de la géométrie projective. Notamment, des représentations graphiques simples sont possibles qui font apparaître les caractéristiques propres à cette géométrie, contrairement au cas d'espaces construits sur d'autres corps.