Hemi-icosahedronA hemi-icosahedron is an abstract regular polyhedron, containing half the faces of a regular icosahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 10 triangles), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into three equal parts. It has 10 triangular faces, 15 edges, and 6 vertices.
Hemi-dodecahedronA hemi-dodecahedron is an abstract regular polyhedron, containing half the faces of a regular dodecahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 6 pentagons), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into three equal parts. It has 6 pentagonal faces, 15 edges, and 10 vertices.
Hemicube (geometry)In abstract geometry, a hemicube is an abstract, regular polyhedron, containing half the faces of a cube. It can be realized as a projective polyhedron (a tessellation of the real projective plane by three quadrilaterals), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into three equal parts. It has three square faces, six edges, and four vertices.
Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Projective orthogonal groupIn projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin.
TétrahémihexaèdreEn géométrie, le tétrahémihexaèdre, appelé aussi heptaèdre de Reinhardt (du nom de Curt Reinhardt, qui l'a inventé en 1885) est un polyèdre uniforme non convexe, indexé sous le nom U4. Il a 6 sommets, 12 arêtes, et 7 faces : 4 triangulaires (qui font partie de celles de l'octaèdre régulier) et 3 carrées. C'est le seul polyèdre uniforme non prismatique avec un nombre impair de faces. Il est le seul polyèdre uniforme avec une caractéristique d'Euler égale à 1 et est par conséquent une représentation du plan projectif réel très similaire à la surface romaine.
Polytope abstraitEn mathématiques, et plus particulièrement en géométrie discrète, un polytope abstrait est un ensemble partiellement ordonné dont l'ordre reflète les propriétés combinatoires d'un polytope (au sens traditionnel, généralisant les polygones et les polyèdres à un nombre de dimensions quelconque), mais pas les aspects géométriques usuels, tels que les angles ou les distances. On dit qu'un polytope (géométrique) est une réalisation dans un espace à n dimensions (le plus souvent euclidien) du polytope abstrait correspondant.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Plan projectif réelEn géométrie, le plan projectif réel, noté RP ou P(R), est un exemple simple d'espace projectif (le corps des scalaires est constitué des nombres réels et la dimension est 2), permettant d'illustrer les mécanismes fondamentaux de la géométrie projective. Notamment, des représentations graphiques simples sont possibles qui font apparaître les caractéristiques propres à cette géométrie, contrairement au cas d'espaces construits sur d'autres corps.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.