In mathematics, the composition operator with symbol is a linear operator defined by the rule where denotes function composition. The study of composition operators is covered by AMS category 47B33. In physics, and especially the area of dynamical systems, the composition operator is usually referred to as the Koopman operator (and its wild surge in popularity is sometimes jokingly called "Koopmania"), named after Bernard Koopman. It is the left-adjoint of the transfer operator of Frobenius–Perron. Using the language of , the composition operator is a pull-back on the space of measurable functions; it is adjoint to the transfer operator in the same way that the pull-back is adjoint to the push-forward; the composition operator is the . Since the domain considered here is that of Borel functions, the above describes the Koopman operator as it appears in Borel functional calculus. The domain of a composition operator can be taken more narrowly, as some Banach space, often consisting of holomorphic functions: for example, some Hardy space or Bergman space. In this case, the composition operator lies in the realm of some functional calculus, such as the holomorphic functional calculus. Interesting questions posed in the study of composition operators often relate to how the spectral properties of the operator depend on the function space. Other questions include whether is compact or trace-class; answers typically depend on how the function behaves on the boundary of some domain. When the transfer operator is a left-shift operator, the Koopman operator, as its adjoint, can be taken to be the right-shift operator. An appropriate basis, explicitly manifesting the shift, can often be found in the orthogonal polynomials. When these are orthogonal on the real number line, the shift is given by the Jacobi operator. When the polynomials are orthogonal on some region of the complex plane (viz, in Bergman space), the Jacobi operator is replaced by a Hessenberg operator.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-656: Numerical linear algebra for Koopman and DMD
The Dynamic Mode Decomposition (DMD) has become a tool of trade in computational data driven analysis of complex dynamical systems. The DMD is deeply connected with the Koopman spectral analysis of no
Séances de cours associées (4)
Techniques logiques et de preuve
Couvre les entiers, les rationnels, la logique, les techniques de preuve, les fonctions et les relations à l'aide d'exemples et de tables de vérité.
Afficher plus
Publications associées (18)
Concepts associés (2)
Composition de fonctions
La composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée). Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par On applique ici f à l'argument x, puis on applique g au résultat.
Système dynamique
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.