Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la construction d'un modèle de probabilité, l'échantillonnage aléatoire, le calcul de la variance et l'optimisation de l'allocation dans les expériences.
Explore l'échangeabilité, les résumés statistiques pour les réseaux, les questions d'invariance et le théorème Poisson Limit dans les statistiques des réseaux.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
Explore le cadre de la théorie de la décision en théorie statistique, considérant les statistiques comme un jeu aléatoire avec des concepts clés tels que la recevabilité, les règles minimax et les règles Bayes.
Couvre la dérivation des résultats exacts pour les petites souches dans les matériaux composites et les implications des données expérimentales en dehors de ces limites.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.