In statistics, survey sampling describes the process of selecting a sample of elements from a target population to conduct a survey.
The term "survey" may refer to many different types or techniques of observation. In survey sampling it most often involves a questionnaire used to measure the characteristics and/or attitudes of people. Different ways of contacting members of a sample once they have been selected is the subject of survey data collection. The purpose of sampling is to reduce the cost and/or the amount of work that it would take to survey the entire target population. A survey that measures the entire target population is called a census. A sample refers to a group or section of a population from which information is to be obtained
Survey samples can be broadly divided into two types: probability samples and super samples. Probability-based samples implement a sampling plan with specified probabilities (perhaps adapted probabilities specified by an adaptive procedure). Probability-based sampling allows design-based inference about the target population. The inferences are based on a known objective probability distribution that was specified in the study protocol. Inferences from probability-based surveys may still suffer from many types of bias.
Surveys that are not based on probability sampling have greater difficulty measuring their bias or sampling error. Surveys based on non-probability samples often fail to represent the people in the target population.
In academic and government survey research, probability sampling is a standard procedure. In the United States, the Office of Management and Budget's "List of Standards for Statistical Surveys" states that federally funded surveys must be performed:
selecting samples using generally accepted statistical methods (e.g., probabilistic methods that can provide estimates of sampling error). Any use of nonprobability sampling methods (e.g., cut-off or model-based samples) must be justified statistically and be able to measure estimation error.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
On introduit les bases de l'automatique linéaire discrète qui consiste à appliquer une commande sur des intervalles uniformément espacés. La cadence de l'échantillonnage qui est associée joue un rôle
thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Un sondage est une méthode statistique visant à évaluer les proportions de différentes caractéristiques d'une population à partir de l'étude d'une partie seulement de cette population, appelée échantillon. Les proportions sont déterminées avec des marges d'erreur, dans lesquelles se situent les proportions recherchées avec telle ou telle probabilité. Par métonymie, le mot sondage désigne également le document présentant les résultats de l'étude par sondage. Les sondages les plus connus du grand public portent sur des populations humaines.
En statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...
Bristol2024
,
Surrogate-based optimization is widely used for aerodynamic shape optimization, and its effectiveness depends on representative sampling of the design space. However, traditional sampling methods are hard-pressed to effectively sample high-dimensional desi ...
2024
, ,
The recent geopolitical conflicts in Europe have underscored the vulnerability of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy systems ensuring sustainable energy supply in the future, the ...