Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Explore les signaux filtrants avec un filtre moyen mobile et le processus d'échantillonnage, soulignant l'importance de la reconstruction des signaux à partir des échantillons.
Explore la caractérisation des poudres en céramique, en mettant l'accent sur l'impact sur les propriétés de la céramique et le processus de fabrication.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.