Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plonge dans l'impact de l'apprentissage profond sur les systèmes de connaissances non conceptuels et les progrès dans les transformateurs et les réseaux antagonistes génératifs.
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Plongez dans les défis et les avantages de l'apprentissage profond, en soulignant la transition vers les réseaux neuronaux convolutifs et l'impact de la largeur du réseau sur le paysage des pertes.
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.