Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les réseaux neuronaux convolutifs, couvrant la convolution, la corrélation croisée, la mise en commun maximale, la structure des couches et des exemples tels que LeNet5 et AlexNet.
Couvre la chaîne de Markov Monte Carlo et le rôle des réseaux neuronaux dans la représentation des états quantiques et l'approximation de l'état fondamental pour les systèmes de spins frustrés.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Couvre l'algorithme BackProp, y compris l'initialisation, la propagation du signal, le calcul des erreurs, la mise à jour du poids et la comparaison de la complexité avec la différenciation numérique.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Explore les représentations factorisées pour la planification, en se concentrant sur la réduction de la complexité et l'amélioration de l'efficacité grâce à une modélisation distincte des fonctionnalités.