Concept

Asymétrie (statistiques)

Résumé
En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse. Définition Étant donné une variable aléatoire réelle X de moyenne μ et d’écart type σ, on définit son coefficient d’asymétrie comme le moment d’ordre trois de la variable centrée réduite : : \gamma_1 = \mathbb{E} \left[ \left( \frac{X - \mu}{\sigma} \right)^3 \right] lorsque cette espérance existe. On a donc : : \gamma_1 = \frac{\mu_3}{\mu_2^{\ 3/2}} = \frac{\kappa_3}{\kappa_2^{\ 3/2}
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement