In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.
Distance correlation can be used to perform a statistical test of dependence with a permutation test. One first computes the distance correlation (involving the re-centering of Euclidean distance matrices) between two random vectors, and then compares this value to the distance correlations of many shuffles of the data.
The classical measure of dependence, the Pearson correlation coefficient, is mainly sensitive to a linear relationship between two variables. Distance correlation was introduced in 2005 by Gábor J. Székely in several lectures to address this deficiency of Pearson's correlation, namely that it can easily be zero for dependent variables. Correlation = 0 (uncorrelatedness) does not imply independence while distance correlation = 0 does imply independence. The first results on distance correlation were published in 2007 and 2009. It was proved that distance covariance is the same as the Brownian covariance. These measures are examples of energy distances.
The distance correlation is derived from a number of other quantities that are used in its specification, specifically: distance variance, distance standard deviation, and distance covariance. These quantities take the same roles as the ordinary moments with corresponding names in the specification of the Pearson product-moment correlation coefficient.
Let us start with the definition of the sample distance covariance. Let (Xk, Yk), k = 1, 2, ..., n be a statistical sample from a pair of real valued or vector valued random variables (X, Y).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En statistique, un indicateur de dispersion mesure la variabilité des valeurs d’une série statistique. Il est toujours positif et d’autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile. Ces indicateurs complètent l’information apportée par les indicateurs de position ou de tendance centrale, mesurés par la moyenne ou la médiane. Dans la pratique, c'est-à-dire dans l'industrie, les laboratoires ou en métrologie, où s'effectuent des mesurages, cette dispersion est estimée par l'écart type.
En statistique, la corrélation de Spearman ou rho de Spearman, nommée d'après Charles Spearman (1863-1945) et souvent notée par la lettre grecque (rho) ou est une mesure de dépendance statistique non paramétrique entre deux variables. La corrélation de Spearman est étudiée lorsque deux variables statistiques semblent corrélées sans que la relation entre les deux variables soit de type affine. Elle consiste à trouver un coefficient de corrélation, non pas entre les valeurs prises par les deux variables mais entre les rangs de ces valeurs.
En théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Explore l'analyse des composantes principales, la réduction de la dimensionnalité, l'évaluation de la qualité des données et le contrôle du taux d'erreur.
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operat ...