Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le binning aléatoire dans la théorie de l'information avancée, en se concentrant sur l'attribution d'étiquettes basées sur la typicité et en atteignant des taux d'erreur négligeables dans le codage source.
Explore les erreurs optimales dans les modèles de grande dimension, en comparant les algorithmes et en faisant la lumière sur l'interaction entre l'architecture du modèle et la performance.
Plonge dans la quantification de l'entropie dans les données de neurosciences, explorant comment l'activité neuronale représente l'information sensorielle et les implications des séquences binaires.
Explore la corrélation maximale dans la théorie de l'information, les propriétés mutuelles de l'information, les mesures de Renyi et les fondements mathématiques de la théorie de l'information.