Dodécaèdre adouciLe dodécaèdre adouci ou icosidodécaèdre adouci est un solide d'Archimède. Le dodécaèdre possède 92 faces dont 12 sont des pentagones et les 80 autres sont des triangles équilatéraux. Il possède aussi 150 arêtes et 60 sommets. Il a deux formes distinctes, qui sont les images dans un miroir (ou énantiomorphes) l'une de l'autre. Le dodécaèdre peut être engendré en prenant les douze faces pentagonales du dodécaèdre, en les tirant de telle façon qu'aucune ne se touchent, puis en leur donnant toutes une petite rotation de leurs centres (toutes en sens horaire (Sh) ou toutes en sens anti-horaire (Sah)) jusqu'à ce que l'espace entre elles puisse être rempli par des triangles équilatéraux.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Polyèdre uniforme étoiléEn géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
Petit rhombicuboctaèdrethumb|180px|La première version imprimée d'un petit rhombicuboctaèdre, par Léonard de Vinci qui apparait dans la Divine Proportion. thumb|180px|Patron.|alt= Le petit rhombicuboctaèdre est un solide d'Archimède avec huit faces triangulaires et dix-huit faces carrées. Il possède 24 sommets identiques, avec un triangle et trois carrés s'y rencontrant. Le polyèdre possède une symétrie octaédrique, comme le cube et l'octaèdre. Son dual est appelé l'icositétraèdre trapézoïdal, bien que ses faces ne soient pas réellement de vrais trapèzes.
IcosidodécaèdreLe solide d'Archimède de vingt faces triangulaires et douze faces pentagonales s’appelle un icosidodécaèdre. Le mot “icosidodécaèdre” commence par “icos”, qui signifie “vingt”, soit le nombre de faces du solide de Platon de douze sommets, qui est le dual du “dodécaèdre” de Platon, dont les douze faces sont pentagonales. Cette image‐ci montre l’icosidodécaèdre de face et de dessus, avec deux faces triangulaires horizontales. De dessus le contour est un dodécagone, qui entoure dix triangles et six pentagones.
Gyro-rhombicosidodécaèdreIn geometry, the gyrate rhombicosidodecahedron is one of the Johnson solids (J72). It is also a canonical polyhedron. It can be constructed as a rhombicosidodecahedron with one pentagonal cupola rotated through 36 degrees. They have the same faces around each vertex, but vertex configurations along the rotation become a different order, 3.4.4.5.
Parabigyro-rhombicosidodécaèdreIn geometry, the parabigyrate rhombicosidodecahedron is one of the Johnson solids (J_73). It can be constructed as a rhombicosidodecahedron with two opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron. Alternative Johnson solids, constructed by rotating different cupolae of a rhombicosidodecahedron, are: The gyrate rhombicosidodecahedron (J_72) where only one cupola is rotated; The metabigyrate rhombicosidodecahedron (J_74) where two non-opposing cupolae are rotated; And the trigyrate rhombicosidodecahedron (J_75) where three cupolae are rotated.
Métabigyro-rhombicosidodécaèdreIn geometry, the metabigyrate rhombicosidodecahedron is one of the Johnson solids (J_74). It can be constructed as a rhombicosidodecahedron with two non-opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron. Alternative Johnson solids, constructed by rotating different cupolae of a rhombicosidodecahedron, are: The gyrate rhombicosidodecahedron (J_72) where only one cupola is rotated; The parabigyrate rhombicosidodecahedron (J_73) where two opposing cupolae are rotated; And the trigyrate rhombicosidodecahedron (J_75) where three cupolae are rotated.
Icosidodécaèdre tronquéthumb|Patron (géométrie) L'icosidodécaèdre tronqué est un solide d'Archimède. Il possède 30 faces carrées régulières, 20 faces hexagonales régulières, 12 faces décagonales régulières, 120 sommets et 180 arêtes. Puisque chacune des faces possède un centre de symétrie, le grand rhombicosidodécaèdre est un zonoèdre (à quinze générateurs). Son dual est l'hexaki-icosaèdre, solide de Catalan. D'autres noms incluent : grand rhombicosidodécaèdre ; icosidodécaèdre rhombitronqué ; icosidodécaèdre .
Rhombicosidodécaèdre paragyrodiminuéLe rhombicosidodécaèdre paragyrodiminué est un polyèdre faisant partie des solides de Johnson (J77). Comme son nom l'indique, il peut être obtenu à partir d'un rhombicosidodécaèdre auquel on a détaché une coupole décagonale (J5) et dont la coupole décagonale opposée est tournée à 36 degrés. Les 92 solides de Johnson furent nommés et décrits par Norman Johnson en 1966. MathWorld.wolfram.