Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
List of Euclidean uniform tilingsThis table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face. John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra. Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.
Pavage trihexagonalLe pavage trihexagonal est, en géométrie, un pavage semi-régulier du plan euclidien, constitué de triangles équilatéraux et d'hexagones. Au Japon, ce pavage est utilisé en vannerie sous le nom de Kagomé. En physique, ce pavage est appelé réseau de Kagomé d'après le terme japonais. On l'observe dans la structure cristalline de certains matériaux, notamment l'herbertsmithite. Il est très étudié en magnétisme car sa frustration géométrique génère des phases magnétiques exotiques, comme le liquide de spin. Tri
Pavage triangulaireIn geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}. English mathematician John Conway called it a deltille, named from the triangular shape of the Greek letter delta (Δ).
Pavage petit rhombitrihexagonalIn geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}. John Conway calls it a rhombihexadeltille. It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language. There are three regular and eight semiregular tilings in the plane. There is only one uniform coloring in a rhombitrihexagonal tiling.
Truncated triheptagonal tilingIn geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}. There is only one uniform coloring of a truncated triheptagonal tiling. (Naming the colors by indices around a vertex: 123.) Each triangle in this dual tiling, order 3-7 kisrhombille, represent a fundamental domain of the Wythoff construction for the symmetry group [7,3].
Empilement de cerclesvignette|Il n'est pas évident de regrouper des cercles de tailles différentes de la façon la plus compacte. En géométrie, un empilement de cercles ou empilement de disques est un arrangement de cercles ou de disques, de tailles identiques ou non, dans un domaine donné, de telle sorte qu'aucun chevauchement ne se produise et qu'aucun cercle/disque ne puisse être agrandi sans créer de chevauchement. On se pose à leur sujet divers problèmes comme la recherche d'empilements de densité maximale, ou au contraire, minimale.
Pavage hexagonal adouciIn geometry, the snub hexagonal tiling (or snub trihexagonal tiling) is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}. Conway calls it a snub hextille, constructed as a snub operation applied to a hexagonal tiling (hextille). There are three regular and eight semiregular tilings in the plane. This is the only one which does not have a reflection as a symmetry.
Rhombille tilingIn geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets of six rhombi meet at their 60° angles. The rhombille tiling can be seen as a subdivision of a hexagonal tiling with each hexagon divided into three rhombi meeting at the center point of the hexagon.
Configuration de sommetEn géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.