List of Euclidean uniform tilingsThis table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face. John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra. Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.
Pavage carré adouciIn geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}. Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille). There are 3 regular and 8 semiregular tilings in the plane. There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.
Notation de Conway des polyèdresLa notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon. John Conway a généralisé l'utilisation d'opérateurs, tels la définie par Kepler, afin de générer d'une mère des polyèdres de même symétrie. Ses opérateurs peuvent générer des mères tous les solides d'Archimède et de Catalan.
Pavage carréLe pavage carré est, en géométrie, un pavage du plan euclidien constitué de carrés. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage triangulaire et le pavage hexagonal. Le pavage carré possède un symbole de Schläfli de {4,4}, signifiant que chaque sommet est entouré par 4 carrés. Les symétries du pavage carré sont les symétries du carré, les translations, et leurs combinaisons. Elles forment un groupe de symétrie dénommé p4m. Les symétries du carré forment un sous-groupe, dénommé Groupe diédral d'ordre 8.
Coloration uniformelien=//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Square_tiling_uniform_colorings.png/240px-Square_tiling_uniform_colorings.png|vignette|240x240px| Le pavage carré possède 9 colorations uniformes :1111, 1112(a), 1112(b),1122, 1123(a), 1123(b),1212, 1213, 1234. En géométrie, une coloration uniforme est une propriété d'une figure uniforme ( pavage uniforme (en) ou polyèdre uniforme ) qui est colorée pour être isogonale. Différentes symétries peuvent être présentes sur une figure géométrique ayant des faces colorées suivant différents motifs uniformes de couleurs.
Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Figure de sommetEn géométrie, une figure de sommet d'un sommet donné d'un polytope est, de façon intuitive, l'ensemble des points directement reliés à ce sommet par une arête. Ceci s’applique également aux pavages infinis, ou pavages remplissant l’espace avec des cellules polytopiques. De façon plus précise, une figure de sommet pour un n-polytope est un (n-1)-polytope. Ainsi, une figure de sommet pour un polyèdre est une figure polygonale, et la figure de sommet pour un polychore est une figure polyèdrique.