Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Petit rhombicosidodécaèdrevignette|Patron. Le petit rhombicosidodécaèdre est un solide d'Archimède. Il possède 20 faces triangulaires régulières, 30 faces carrées régulières, 12 faces pentagonales régulières, 60 sommets et 120 arêtes. Le nom rhombicosidodécaèdre fait référence au fait que les 30 faces carrées sont placées dans les mêmes plans que les 30 faces du triacontaèdre rhombique qui est le dual de l'icosidodécaèdre. Il peut aussi être appelé un dodécaèdre étendu ou un icosaèdre étendu à partir des opérations de troncature du solide uniforme.
Cube adouciLe cube adouci ou cuboctaèdre adouci est un solide d'Archimède. Le cube adouci possède 38 faces dont 6 sont des carrés et les 32 autres sont des triangles équilatéraux. Il possède 60 arêtes et 24 sommets. Il a deux formes distinctes, qui sont leurs images dans un miroir (ou "énantiomorphes") l'un de l'autre.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Snub (geometry)In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Icosidodécaèdre tronquéthumb|Patron (géométrie) L'icosidodécaèdre tronqué est un solide d'Archimède. Il possède 30 faces carrées régulières, 20 faces hexagonales régulières, 12 faces décagonales régulières, 120 sommets et 180 arêtes. Puisque chacune des faces possède un centre de symétrie, le grand rhombicosidodécaèdre est un zonoèdre (à quinze générateurs). Son dual est l'hexaki-icosaèdre, solide de Catalan. D'autres noms incluent : grand rhombicosidodécaèdre ; icosidodécaèdre rhombitronqué ; icosidodécaèdre .
Grand icosidodécaèdre adouciEn géométrie, le grand icosidodécaèdre adouci est un polyèdre uniforme non convexe, indexé sous le nom U57. Ce polyèdre peut être considéré comme un grand icosaèdre adouci. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la solution réelle négative de ξ3−2ξ=−1/τ, ou approximativement −1,5488772.
Grand icosidodécaèdre adouci inverséEn géométrie, le grand icosidodécaèdre adouci inversé est un polyèdre uniforme non convexe, indexé sous le nom U69. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci inversé centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la plus grande solution réelle positive de ξ3−2ξ=−1/τ, ou approximativement 1,2224727.