In probability theory and statistics, a concentration parameter is a special kind of numerical parameter of a parametric family of probability distributions. Concentration parameters occur in two kinds of distribution: In the Von Mises–Fisher distribution, and in conjunction with distributions whose domain is a probability distribution, such as the symmetric Dirichlet distribution and the Dirichlet process. The rest of this article focuses on the latter usage. The larger the value of the concentration parameter, the more evenly distributed is the resulting distribution (the more it tends towards the uniform distribution). The smaller the value of the concentration parameter, the more sparsely distributed is the resulting distribution, with most values or ranges of values having a probability near zero (in other words, the more it tends towards a distribution concentrated on a single point, the degenerate distribution defined by the Dirac delta function). In the case of multivariate Dirichlet distributions, there is some confusion over how to define the concentration parameter. In the topic modelling literature, it is often defined as the sum of the individual Dirichlet parameters, when discussing symmetric Dirichlet distributions (where the parameters are the same for all dimensions) it is often defined to be the value of the single Dirichlet parameter used in all dimensions. This second definition is smaller by a factor of the dimension of the distribution. A concentration parameter of 1 (or k, the dimension of the Dirichlet distribution, by the definition used in the topic modelling literature) results in all sets of probabilities being equally likely, i.e., in this case the Dirichlet distribution of dimension k is equivalent to a uniform distribution over a k-1-dimensional simplex. Note that this is not the same as what happens when the concentration parameter tends towards infinity. In the former case, all resulting distributions are equally likely (the distribution over distributions is uniform).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.