En mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes. Dans ce cas, la famille de semi-normes peut toujours être choisie filtrante. démonstration|titre=Démonstration de l'équivalence des deux définitions|contenu= (1) ⇒ (2)En effet toute semi-norme p sur E est une fonction convexe et donc pour tout R > 0, l'ensemble des x de E vérifiant p(x) < R est convexe. (2) ⇒ (1)Soient T la topologie de E, supposée vérifier (2), et T ' celle, moins fine, définie par la famille de toutes les semi-normes sur E continues pour T.Il s'agit de prouver qu'inversement, T ⊂ T '. Il suffit pour cela de montrer que tout T-voisinage V de 0 contient un T '-voisinage de 0.Or pour un tel V, par continuité de l'application (λ, v) ↦ λv, il existe un réel α > 0 et un T-voisinage W de 0, que l'on peut supposer convexe d'après (2), tels queV contient alors l'ensemble Ω défini parDe plus, Ω est voisinage de 0 (donc absorbant), convexe, et équilibré. sa jauge est donc une semi-norme continue sur E, dont la boule de centre 0 et de rayon est par conséquent un T '''-voisinage de 0. Or cette boule est incluse dans Ω, donc dans V. Tout espace vectoriel normé est localement convexe (topologie définie par une seule semi-norme : la norme). La topologie faible d'un espace vectoriel topologique est localement convexe. On utilise les formes linéaires continues en module comme famille de semi-normes. Sur son dual topologique, les topologies forte et faible-* sont, elles aussi, définies chacune par une famille de semi-normes. Pour , les espaces métriques de suites et les espaces métriques de fonctions ne sont pas des espaces localement convexes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.