Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Spineurvignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Classification des algèbres de CliffordEn mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur R, C ou H (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V.
Feynman slash notationIn the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If A is a covariant vector (i.e., a 1-form), where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply Using the anticommutators of the gamma matrices, one can show that for any and , where is the identity matrix in four dimensions. In particular, Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products.
BispinorIn physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime.
Spin connectionIn differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
Mécanisme de see-sawLe mécanisme de see-saw, mécanisme de la balancoire ou mécanisme à bascule, en théorie quantique des champs, permet de générer de très petits nombres à partir de nombres « raisonnables » et de grands nombres. Ce mécanisme apparaît notamment dans les théories de grande unification, et en particulier pour expliquer les masses des neutrinos et leur oscillation. Ce modèle produit un neutrino léger, pour chacune des trois saveurs de neutrinos connues, et un neutrino stérile, très lourd et encore non découvert.