Structure interne de la Terrevignette|redresse=1.2|Structure interne de la Terre : 1. Croûte continentale 2. Croûte océanique 3. Manteau supérieur 4. Manteau inférieur (ou Mésosphère) 5. Noyau externe 6. Noyau interne (ou graine terrestre) A. Discontinuité de Mohorovičić B. Discontinuité de Gutenberg C. Discontinuité de Lehmann La structure interne de la Terre est la répartition de l'intérieur de la Terre en enveloppes emboîtées : principalement la croûte, le manteau et le noyau, selon le modèle géologique actuel, qui s'efforce de décrire leurs propriétés et leurs comportements au cours des temps géologiques.
Discontinuité de GutenbergLa discontinuité de Gutenberg ou limite noyau-manteau (en anglais, core-mantle boundary ou CMB) est une discontinuité dans la vitesse sismique qui délimite le noyau et le manteau. Elle se situe à environ de profondeur. Nommée d'après le sismologue Beno Gutenberg, elle est aussi parfois appelée « interface noyau-manteau » ou CMB (anglais core-mantle boundary). Au niveau de cette discontinuité, le rapport pression/température permet la fusion des roches du manteau, grâce notamment à la cristallisation du noyau de fer liquide.
Noyau externeLe noyau externe est la partie liquide du noyau de la Terre, couche intermédiaire située au-dessus de la graine solide (noyau interne) et au-dessous du manteau terrestre. Comme la graine, le noyau est un alliage métallique, principalement constitué de fer et de nickel. Le liquide du noyau externe est animé de mouvements convectifs rapides qui induisent un effet dynamo à l'origine du champ magnétique terrestre. Les études des ondes sismiques qui se propagent à l'intérieur du globe terrestre ont permis à Richard Oldham de proposer l'existence d'un noyau central, plus dense, à l'intérieur de la Terre.
Inversion du champ magnétique terrestreL'inversion du champ magnétique terrestre (également appelé champ géomagnétique) est un phénomène récurrent dans l'histoire géologique terrestre, le pôle Nord magnétique se déplace au pôle Sud géographique, et inversement. C'est le résultat d'une perturbation de la stabilité du noyau de la Terre. Le champ géomagnétique s’affole alors pendant une courte période (de ) pendant laquelle les pôles magnétiques se déplacent rapidement sur toute la surface du globe, ou disparaissent, selon les théories.
Masse terrestre (unité)La masse terrestre (ou masse de la Terre), de symbole M ou M (voire M, d'après l'anglais Earth), est une unité de masse couramment employée en astronomie et planétologie, notamment pour exprimer la masse des planètes du Système solaire et de leurs lunes, ou celle des exoplanètes de type terrestre. Cette unité a été définie comme égale à la masse de la planète Terre, soit ou 1/ = , ou encore 1/ = . En 2015 la assemblée générale de l'UAI a défini la « masse terrestre nominale », une valeur devant rester constante quelles que soient les améliorations ultérieures de la précision des mesures de M.
Formation et évolution du Système solairevignette|Disque protoplanétaire de HL Tauri (image réalisée par l'Atacama Large Millimeter Array). La formation et l'évolution du Système solaire, le système planétaire qui abrite la Terre, sont déterminées par un modèle aujourd'hui très largement accepté et connu sous le nom d'« hypothèse de la nébuleuse solaire ». Ce modèle a été développé au par Emanuel Swedenborg, Emmanuel Kant et Pierre-Simon de Laplace. Les développements consécutifs à cette hypothèse ont fait intervenir une grande variété de disciplines scientifiques comprenant l'astronomie, la physique, la géologie et la planétologie.
S waveNOTOC In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle movement of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.
Gravity of EarthThe gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm . In SI units this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1).
Paléomagnétismevignette|redresse=1.7|Sur Terre, l'expansion des fonds océaniques se traduit, de part et d'autre des dorsales, par l'aimantation rémanente du plancher océanique en bandes symétriques de polarisation opposée suivant les inversions du champ magnétique global de notre planète. Le paléomagnétisme désigne le champ magnétique terrestre passé, et par extension la discipline scientifique qui étudie ses propriétés et sa chronologie. On désigne parfois l'étude du champ magnétique de la Préhistoire récente et de la période historique par le nom d'archéomagnétisme.
Discontinuité de Mohorovičićvignette|350px|Carte du monde montrant la profondeur du Moho. La discontinuité de Mohorovičić, abrégée Moho, est la limite entre la croûte terrestre et le manteau supérieur de la Terre. vignette|300px|A) Discontinuité de Mohorovičić . B) Discontinuité de Gutenberg. C) Discontinuité de Lehmann. 1) Croûte continentale 2) Croûte océanique 3) Manteau supérieur 4) Manteau inférieur 5) Noyau externe 6) Noyau interne.