Résumé
En mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile. La théorie des classes de Chern permet d'associer à chaque fibré un invariant topologique, sa classe, de sorte que si les classes diffèrent, alors les fibrés diffèrent. Ces classes conservent un certain nombre d'informations sur les fibrés qu'elles représentent, mais restent calculables en pratique. Soit n ≥ 1, U(n) le groupe unitaire et BU(n) son espace classifiant. Les classes de Chern de l'espace classifiant du groupe unitaire sont les éléments qui vérifient : et pour tout i > n ; pour n = 1, engendre ; pour l'inclusion , on a pour tout produit fibré ; pour l'inclusion , on a . En particulier, l' de BU(n) est l'algèbre de polynômes sur les classes de Chern : Les classes de Chern peuvent être définies de manière axiomatique. Si V est un fibré vectoriel sur un espace topologique X, les classes de Chern de V sont les éléments qui vérifient les propriétés suivantes : fonctorialité : si est continue et est le fibré vectoriel correspondant au produit fibré de V, on a ; additivité : si est une suite exacte courte de fibrés vectoriels, alors , où désigne le cup-produit ; normalisation : si E est un fibré en droites, avec la classe d'Euler du fibré vectoriel réel sous-jacent. La quantité est appelée classe de Chern totale de V. Soit un fibré vectoriel hermitien C de rang (complexe) n sur une variété lisse M. Un représentant de chaque classe de Chern de V, noté , est donné comme coefficients du polynôme caractéristique de la forme de courbure de V.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (24)
K-théorie
En mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
Coherent sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.
Grassmannienne
En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
Afficher plus