In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi.
The cross product and the Lie bracket operation both satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket.
Let and be two binary operations, and let be the neutral element for . The is
Notice the pattern in the variables on the left side of this identity. In each subsequent expression of the form , the variables , and are permuted according to the cycle . Alternatively, we may observe that the ordered triples , and , are the even permutations of the ordered triple .
The simplest informative example of a Lie algebra is constructed from the (associative) ring of matrices, which may be thought of as infinitesimal motions of an n-dimensional vector space. The × operation is the commutator, which measures the failure of commutativity in matrix multiplication. Instead of , the Lie bracket notation is used:
In that notation, the Jacobi identity is:
That is easily checked by computation.
More generally, if A is an associative algebra and V is a subspace of A that is closed under the bracket operation: belongs to V for all , the Jacobi identity continues to hold on V. Thus, if a binary operation satisfies the Jacobi identity, it may be said that it behaves as if it were given by in some associative algebra even if it is not actually defined that way.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space.
En algèbre, le terme dérivation est employé dans divers contextes pour désigner une application vérifiant l'identité de Leibniz. Selon le contexte, il peut s'agir, entre autres, d'une application additive définie sur un anneau A à valeurs dans un -module, ou bien d'un endomorphisme d'une algèbre unitaire sur un anneau unitaire. Cette notion est en particulier vérifiée par l'opérateur de dérivation d'une fonction (de variable réelle, par exemple); elle en est une généralisation utilisée en géométrie algébrique et en calcul différentiel sur les variétés (par exemple pour définir le crochet de Lie).
En mathématiques, l'anticommutativité est la propriété caractérisant les opérations pour lesquelles intervertir deux arguments transforme le résultat en son opposé. Par exemple, une opération binaire ✻ est anticommutative si Cette propriété intervient en algèbre, en géométrie, en analyse et, par conséquent, en physique. Étant donné un entier naturel n, une opération n-aire est dite anticommutative si intervertir deux arguments transforme le résultat en son opposé.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...