Filtration (probabilités)En théorie des probabilités, une filtration est une famille de tribus dans l'ordre croissant et chaque prédécesseur est un sous-ensemble du successeur, c'est-à-dire pour les éléments de filtration . Avec la filtration on modélise le flux d'informations. Chaque élément de la famille a l'information sur les événements qui étaient observables au temps . Soient un espace de probabilité et . La famille des sous-tribu est une filtration si ordonnée par ordre croissant, cela signifie pour tout . est un espace de probabilité filtré.
Événement (probabilités)vignette|Jeu de dés : une expérience aléatoire. En théorie des probabilités, un événement lié à une expérience aléatoire est un sous-ensemble des résultats possibles pour cette expérience (c'est-à-dire un certain sous-ensemble de l'univers lié à l'expérience). Un événement étant souvent défini par une proposition, nous devons pouvoir dire, connaissant le résultat de l'expérience aléatoire, si l'événement a été réalisé ou non au cours de cette expérience. Par exemple, considérons l'expérience aléatoire consistant à lancer un dé à 6 faces.
Théorème d'extension de CarathéodoryEn théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité).
Expérience aléatoirevignette|Exemple d'expérience aléatoire: pile ou face En théorie des probabilités, une expérience aléatoire est une expérience renouvelable (en théorie si ce n'est en pratique), dont le résultat ne peut être prévu, et qui, renouvelée dans des conditions identiques –pour autant que l'observateur puisse s'en assurer– ne donne pas forcément le même résultat à chaque renouvellement. Une succession de lancers d'une même pièce en est un exemple classique. Le tirage au hasard d'un élément dans un ensemble en est un autre exemple.
Ensemble de VitaliL'ensemble de Vitali, aussi appelé espace de Vitali, est un exemple simple de partie non mesurable de la droite réelle, découvert en 1905 par le mathématicien Giuseppe Vitali. L'axiome du choix joue un rôle essentiel dans sa construction. Soit la relation deux réels sont en relation si leur différence est un rationnel. Chaque classe d'équivalence élément du groupe quotient R/Q rencontre l'intervalle unité [0, 1]. En effet si on note la partie entière (par défaut) de , et sont équivalents.
Sigma additivitévignette|Illustration de la sigma additivité La sigma additivité, appelé aussi additivité dénombrable, est un concept en théorie de la mesure. Soit un ensemble et un ensemble de parties de . On dit que l'application μ est σ-additive sur lorsqu'elle vérifie la propriété suivante : si E1, E2, ... est une suite d'éléments de , si ces parties de sont deux à deux disjointes et si leur réunion E est aussi un élément de , alors la valeur μ(E) de μ sur cette réunion E est égale à la somme des valeurs de μ sur les parties Ek : Il s'agit d'une version plus forte de l'additivité simple.
Outcome (probability)In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible outcomes that make up our sample space are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails".
Lemme de FatouEn mathématiques, plus précisément en analyse, le lemme de Fatou est un résultat important dans la théorie de l'intégration de Lebesgue. Il a été démontré par le mathématicien français Pierre Fatou (1878-1929). Ce lemme compare l'intégrale d'une limite inférieure de fonctions mesurables positives avec la limite inférieure de leurs intégrales. Il est en général présenté dans une suite de trois résultats : d'abord le théorème de convergence monotone, qui sert ensuite à démontrer le lemme de Fatou, puis celui-ci est utilisé pour démontrer le théorème de convergence dominée.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.