Isospin faibleEn physique des particules, l'isospin faible sous l'interaction faible correspond à l'isospin sous l'interaction forte. L'isospin faible est habituellement représenté par le symbole Tz ou IW. Les leptons ne sont pas soumis à l'interaction forte et donc l'isospin n'est pas défini pour eux. Mais tous les fermions élémentaires peuvent se grouper en multiplets sous l'interaction faible, de la même manière que, sous l'interaction forte, l'isospin crée des multiplets de hadrons de particules qui sont imperceptibles.
Interaction de YukawaEn physique des particules, l'interaction de Yukawa est une interaction entre un champ scalaire φ et un champ de Dirac ψ de type : (scalaire) ou (pseudoscalaire). Cette interaction porte le nom du physicien japonais Hideki Yukawa. Cette interaction s'effectue entre les nucléons d'un atome et permet de maintenir le noyau atomique en place. Cette interaction consiste pour les nucléons de s'échanger des pion (particule) qui peuvent transformer des neutrons en protons et vice-versa.
Hypercharge faibleL' est, en physique des particules, un nombre quantique correspond à deux fois la différence entre la charge électrique et l'isospin faible. C'est le générateur du composant U(1) du groupe de jauge électrofaible, SU(2)xU(1). Dans une relation semblable à la formule de Gell-Mann–Nishijima, on a : où Q est la charge électrique (dans les unités de la charge élémentaire), Tz est l'isospin faible, et YW est l'hypercharge faible.
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
Théorie de Fermi de la désintégration βthumb|360px|La décroissance β− dans un noyau atomique (l'antineutrino associé est omis).En bas à droite est représentée la décroissance bêta du neutron libre.Dans les deux processus, l'émission intermédiaire d'un boson virtuel W- (qui décroit ensuite en un électron et un antineutrino) n'est pas montrée. En physique des particules, l'interaction de Fermi (aussi connue comme la théorie de Fermi de la désintégration β) est une explication de la radioactivité β, proposée par Enrico Fermi en 1933.
Chiral symmetry breakingIn particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon ("for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics").
Condensat de tachyonsEn physique théorique, un condensat de tachyons est une transition de phase qui se produit par lorsqu'un champ de tachyons atteint une énergie potentielle minimale. Il génère une émission de particules qui diminue l'énergie du système. Jusqu'ici, tous les exemples de condensat de tachyons sont liés à une brisure spontanée de symétrie. Il a été suggéré d'utiliser les en (BWAs) pour observer les condensats de tachyons ou leurs effets. Catégorie:Théorie des cordes Catégorie:Phase Catégorie:Physique des partic