New FoundationsEn logique mathématique, New Foundations (NF) est une théorie des ensembles axiomatique introduite par Willard Van Orman Quine en 1937, dans un article intitulé « New Foundations for Mathematical Logic », et qui a connu un certain nombre de variantes. Pour éviter le paradoxe de Russell, le principe de compréhension est restreint aux formules stratifiées, une restriction inspirée de la théorie des types, mais où la notion de type est implicite.
Relation (mathematics)In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Intersection (mathématiques)Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté , dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si est l'ensemble vide ∅. A est inclus dans B si et seulement si .
Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Cardinal mesurableEn mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. Un cardinal mesurable est un cardinal non dénombrable κ tel qu'il existe une mesure μ non triviale, κ-additive, à valeurs dans , définie sur tous les sous-ensembles de κ ; μ est donc une application de l'ensemble des parties de κ vers telle que : Pour toute famille (avec α
Théorie des ensembles de Zermelo-Fraenkelvignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Algèbre des parties d'un ensembleEn théorie des ensembles, l'ensemble des parties d'un ensemble, muni des opérations d'intersection, de réunion, et de passage au complémentaire, possède une structure d'algèbre de Boole. D'autres opérations s'en déduisent, comme la différence ensembliste et la différence symétrique. L'algèbre des parties d'un ensemble étudie l'arithmétique de ces opérations (voir l'article « Opération ensembliste » pour des opérations qui ne laissent pas stable l'ensemble des parties d'un ensemble).
Ensemble transitifEn mathématiques, plus précisément en théorie des ensembles, un ensemble transitif est un ensemble dont tous les éléments sont aussi des parties de l'ensemble. Un ensemble X est dit transitif si tout élément y d’un élément x de X est lui-même élément de X c'est-à-dire si tout élément x de X est un sous-ensemble de X (en notant « ⊂ » l'inclusion au sens large) : ∀ x (x ∈ X ⇒ x ⊂ X) ce qui revient à (en notant ∪X l'union des éléments de X) : ∪X ⊂ X.
Grand cardinalEn mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que א, א, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée.
Univers constructibleEn mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.