Concept

Théorie de la perturbation (mécanique quantique)

Concepts associés (27)
Théorie des perturbations
La théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Dégénérescence (physique quantique)
En physique quantique, la dégénérescence est le fait pour plusieurs états quantiques distincts de se retrouver au même niveau d'énergie. Un niveau d'énergie est dit dégénéré s'il correspond à plusieurs états distincts d'un atome, molécule ou autre système quantique. Le nombre d'états différents qui correspond à un niveau donné est dit son degré de dégénérescence. Mathématiquement, la dégénérescence est décrite par un opérateur hamiltonien ayant plusieurs fonctions propres avec la même valeur propre.
Noyau atomique
vignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Quantum
En physique, quantum (mot latin signifiant « combien » et dont le pluriel s'écrit « quanta ») représente la plus petite mesure indivisible, que ce soit celle de l'énergie, de la quantité de mouvement ou de la masse. Cette notion est centrale en théorie des quanta, laquelle a donné naissance à la mécanique quantique. La théorie des quanta ou théorie quantique, affirme que l'énergie rayonnante est discontinue. Les quanta sont alors les quantités minimales, les « grains » composant cette énergie. Leur valeur est h.
Moment magnétique
En physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
État lié
En physique, un état lié est un composé de deux ou plusieurs blocs constitutifs (particules ou solides) qui se comportent comme un seul objet. En mécanique quantique (où le nombre de particules est conservé), un état lié est un état dans l'espace de Hilbert qui correspond à deux ou plusieurs particules dont l'énergie d'interaction est négative, et ainsi ces particules ne peuvent être séparées sans un apport d'énergie. Le spectre énergétique d'un état lié est discret, contrairement au spectre continu des particules isolées.
Théorie de jauge
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Intégrale de chemin
Une 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Effet tunnel
L'effet tunnel désigne la propriété que possède un objet quantique de franchir une barrière de potentiel même si son énergie est inférieure à l'énergie minimale requise pour franchir cette barrière. C'est un effet purement quantique, qui ne peut pas s'expliquer par la mécanique classique. Pour une telle particule, la fonction d'onde, dont le carré du module représente la densité de probabilité de présence, ne s'annule pas au niveau de la barrière, mais s'atténue à l'intérieur de la barrière (pratiquement exponentiellement pour une barrière assez large).
Particle decay
In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.