vignette|Schéma de l'hydrosystème karstique : infiltrations dans le sol et la roche.
La percolation (du latin percolare, « filtrer », « passer au travers ») désigne communément le passage d'un fluide à travers un milieu poreux ou fissuré plus ou moins perméable. Un exemple de la vie courante est celui de l'écoulement de l'eau au travers de la poudre de café moulu contenu dans le filtre d'une machine à café (d'où le nom de percolateur).
Ce terme a aussi un sens plus précis en physique et en mathématiques : c'est un processus physique critique qui décrit, pour un système, une transition d'un état vers un autre. C'est un phénomène de seuil associé à la transmission d'une « information » par le biais d'un réseau de sites et de liens qui peuvent, selon leur état, relayer ou non l'information aux sites voisins.
Vers 1800, le Français Jean Baptiste de Belloy, ancien évêque de Marseille et bientôt archevêque de Paris (1801), invente le système de la percolation du café, auparavant infusé, ainsi son dubelloire ou sa débelloire devient la première cafetière.
En 1856, Henry Darcy formule « la loi de Darcy » dans l'appendice D de son ouvrage Les fontaines publiques de la ville de Dijon, où il traite de la perméabilité d'un sol en fonction de la hauteur d'eau. Son étude ne concerne cependant que des milieux perméables, et aucun effet de seuil n'est mis en évidence.
Le phénomène de seuil est étudié pour la première fois en 1957 par Simon Broadbent et John Hammersley qui cherchent à comprendre comment les masques à gaz des soldats deviennent inefficaces. Le terme de « percolation » vient du phénomène analogue qu'est le passage non plus d'un gaz, mais de l'eau à travers le percolateur de la machine à café qui est un filtre au même titre que le masque à gaz.
Broadbent et Hammersley en généralisent le sens à la transmission, ou non, d'une « information » par un réseau de sites et de liens. Dans le cas particulier de la physique des fluides, l'information est le fluide (eau ou gaz), et les sites sont les pores du filtre qui relayent l'information s'ils ne sont pas bouchés.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
Lattice models consist of (typically random) objects living on a periodic graph. We will study some models that are mathematically interesting and representative of physical phenomena seen in the real
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
La théorie de la percolation est une branche de la physique statistique et mathématique qui s'intéresse aux caractéristiques des milieux aléatoires, plus précisément aux ensembles de sommets connectés dans un graphe aléatoire. Cette théorie s'applique notamment en science des matériaux pour formaliser les propriétés d'écoulement dans les milieux poreux et pour la modélisation de phénomènes naturels, comme les incendies. L’histoire de la percolation prend ses racines dans l’industrie du charbon.
Lors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
vignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Couvre la théorie de la percolation, les polymères absorbés, les molécules géantes, la transition de phase, les hypothèses déchelle et le comportement universel dans les modèles de percolation.
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
A common method for creating compliant electrodes for dielectric elastomer actuators (DEAs) and soft sensors is to incorporate electrically conductive carbon particles into a polymer matrix. However, using unidirectional aligned carbon fibers instead not o ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...