Concept

Grothendieck category

In mathematics, a Grothendieck category is a certain kind of , introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962. To every algebraic variety one can associate a Grothendieck category , consisting of the quasi-coherent sheaves on . This category encodes all the relevant geometric information about , and can be recovered from (the Gabriel–Rosenberg reconstruction theorem). This example gives rise to one approach to noncommutative algebraic geometry: the study of "non-commutative varieties" is then nothing but the study of (certain) Grothendieck categories. By definition, a Grothendieck category is an with a . Spelled out, this means that is an ; every (possibly infinite) family of objects in has a coproduct (also known as direct sum) in ; direct limits of short exact sequences are exact; this means that if a direct system of short exact sequences in is given, then the induced sequence of direct limits is a short exact sequence as well. (Direct limits are always right-exact; the important point here is that we require them to be left-exact as well.) possesses a generator, i.e. there is an object in such that is a faithful functor from to the . (In our situation, this is equivalent to saying that every object of admits an epimorphism , where denotes a direct sum of copies of , one for each element of the (possibly infinite) set .) The name "Grothendieck category" neither appeared in Grothendieck's Tôhoku paper nor in Gabriel's thesis; it came into use in the second half of the 1960s in the work of several authors, including Jan-Erik Roos, Bo Stenström, Ulrich Oberst, and Bodo Pareigis. (Some authors use a different definition in that they don't require the existence of a generator.) The prototypical example of a Grothendieck category is the ; the abelian group of integers can serve as a generator.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.