Fiducial inferenceFiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in favour of frequentist inference, Bayesian inference and decision theory. However, fiducial inference is important in the history of statistics since its development led to the parallel development of concepts and tools in theoretical statistics that are widely used.
Fisher's methodIn statistics, Fisher's method, also known as Fisher's combined probability test, is a technique for data fusion or "meta-analysis" (analysis of analyses). It was developed by and named for Ronald Fisher. In its basic form, it is used to combine the results from several independence tests bearing upon the same overall hypothesis (H0). Fisher's method combines extreme value probabilities from each test, commonly known as "p-values", into one test statistic (X2) using the formula where pi is the p-value for the ith hypothesis test.
Test ZEn statistique, un test Z est un terme générique désignant tout test statistique dans lequel la statistique de test suit une loi normale sous l'hypothèse nulle. On considère un n-échantillon avec et un risque . Si l'on teste La statistique de test sous l'hypothèse nulle est : qui suit une loi normale Si , la réalisation de la statistique de test, est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle. Si l'on teste Si est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle.
Test des rangs signés de WilcoxonEn statistique, le test des rangs signés de Wilcoxon est une alternative non-paramétrique au test de Student pour des échantillons appariés. Le test s'intéresse à un paramètre de position : la médiane, le but étant de tester s'il existe un changement sur la médiane. La procédure considère que les variables étudiées ont été mesurées sur une échelle permettant d'ordonner les observations en rangs pour chaque variable (c'est-à-dire une échelle ordinale) et que les différences de rangs entre variables ont un sens.
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Test des signesEn statistique, le test des signes est une alternative non-paramétrique au test T pour des échantillons appariés. La seule condition requise par ce test est que la distribution sous-jacente de la variable étudiée soit continue. Aucune condition sur la nature ou la forme de la distribution n'est requise. Le test est applicable lorsque l'on possède deux mesures de deux variables pour chaque individu et que l'on souhaite tester la significativité des différences entre les deux mesures.
Biais de publicationUn biais de publication désigne en science le fait que les chercheurs et les revues scientifiques ont bien plus tendance à publier des expériences ayant obtenu un résultat positif (statistiquement significatif) que des expériences ayant obtenu un résultat négatif (soutenant l'hypothèse nulle). Ce biais de publication donne aux lecteurs une perception biaisée (vers le positif) de l'état de la recherche. Plusieurs causes au biais de publication ont été avancées. En 1977, Michael J.
Type I and type II errorsIn statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the failure to reject a null hypothesis that is actually false (also known as a "false negative" finding or conclusion; example: "a guilty person is not convicted").
Correction de BonferroniEn statistiques, la correction de Bonferroni est une méthode pour corriger le seuil de significativité lors de comparaisons multiples. La correction de Bonferroni est la méthode de correction la plus simple, bien qu'elle soit conservatrice étant donné qu'elle présente un risque conséquent d'. En effet, cette méthode ne prend pas en compte quelques informations, comme la distribution des valeurs p des différentes comparaisons.
Data dredgingvignette|Exemple de Data dredging. Le data dredging (littéralement le dragage de données mais mieux traduit comme étant du triturage de données) est une technique statistique qui . Une des formes du data dredging est de partir de données ayant un grand nombre de variables et un grand nombre de résultats, et de choisir les associations qui sont « statistiquement significatives », au sens de la valeur p (on parle aussi de p-hacking).