Un biais de publication désigne en science le fait que les chercheurs et les revues scientifiques ont bien plus tendance à publier des expériences ayant obtenu un résultat positif (statistiquement significatif) que des expériences ayant obtenu un résultat négatif (soutenant l'hypothèse nulle). Ce biais de publication donne aux lecteurs une perception biaisée (vers le positif) de l'état de la recherche. Plusieurs causes au biais de publication ont été avancées. En 1977, Michael J. Mahoney a montré que les comités de lecture des revues scientifiques refusent plus facilement les articles dont le résultat est non significatif que ceux ayant trouvé un résultat significatif. Sachant cela, les chercheurs ont tendance à considérer un résultat non significatif comme moins intéressant pour la communauté scientifique qu'un résultat statistiquement significatif. Sachant que le résultat risque d'être rejeté, ils ne s'investissent pas dans le processus de publication qu'ils pensent voué à l'échec. Une autre raison avancée pour expliquer le biais de publication est le fait que les chercheurs des industries pharmaceutiques réalisent de nombreux tests qu'ils ne souhaitent pas nécessairement voir publiés, soit en raison du secret industriel, soit que les résultats sont défavorables au produit. Pour éviter cela, plusieurs revues médicales dont le Journal of the American Medical Association, les Annals of Internal Medicine, The Lancet et le New England Journal of Medicine ont signé un accord interdisant la publication de résultats de recherche pharmaceutique qui n'auraient pas été enregistrés dans une base de données avant leur démarrage. Le phénomène a également été observé en sciences sociales. Le politologue James Monogan propose par exemple de déclarer les études et les protocoles de recherche auprès d'un organisme dédié avant d'avoir pu observer les résultats de l'étude afin que les chercheurs soient contraints d'une part à adopter un protocole de recherche clair et d'autre part à divulguer leurs résultats, qu'ils soient ou non statistiquement significatifs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (13)
Metascience
Metascience (also known as meta-research) is the use of scientific methodology to study science itself. Metascience seeks to increase the quality of scientific research while reducing inefficiency. It is also known as "research on research" and "the science of science", as it uses research methods to study how research is done and find where improvements can be made. Metascience concerns itself with all fields of research and has been described as "a bird's eye view of science".
Méta-analyse
Une méta-analyse est une méthode scientifique systématique combinant les résultats d'une série d'études indépendantes sur un problème donné, selon un protocole reproductible. Plus spécifiquement, il s'agit d'une synthèse statistique des études incluses dans une revue systématique. La méta-analyse permet une analyse plus précise des données par l'augmentation du nombre de cas étudiés et de tirer une conclusion globale. La méta-analyse fait partie des méthodes d'analyse dites secondaires en ce sens qu'elles s'appuient sur la ré-exploitation de données existantes.
Médecine fondée sur les faits
La médecine fondée sur les faits (ou médecine fondée sur les données probantes ; voir les autres synonymes) se définit comme . On utilise plus couramment le terme anglais , et parfois les termes médecine fondée sur les preuves ou médecine factuelle. Ces preuves proviennent d'études cliniques systématiques, telles que des essais contrôlés randomisés en double aveugle, des méta-analyses, éventuellement des études transversales ou de suivi bien construites.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.