Théorie des nombres transcendantsEn mathématiques, la théorie des nombres transcendants est une branche de la théorie des nombres qui étudie les nombres transcendants (nombres qui ne sont pas des solutions d'une équation polynomiale à coefficients entiers). Un nombre complexe α est dit transcendant si pour tout polynôme non nul P à coefficients entiers, P(α) ≠ 0. Il en est alors de même pour tout polynôme non nul à coefficients rationnels. Plus généralement, la théorie traite de l'indépendance algébrique des nombres. Un ensemble de nombres {α1, α2, .
Irrationnel quadratiqueUn irrationnel quadratique est un nombre irrationnel solution d'une équation quadratique à coefficients rationnels, autrement dit, un nombre réel algébrique de degré 2. Il engendre donc un corps quadratique réel Q(), où d est un entier positif sans facteur carré. Les irrationnels quadratiques sont caractérisés par la périodicité à partir d'un certain rang de leur développement en fraction continue (théorème de Lagrange). Les exemples les plus simples d'irrationnels quadratiques sont les racines carrées d'entiers naturels non carrés (le plus célèbre étant ).
Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Constante d'ApéryEn analyse mathématique, la constante d'Apéry est la valeur en 3 de la fonction zêta de Riemann : Elle porte le nom de Roger Apéry, qui a montré en 1978 que ce nombre est irrationnel. On n'en connaît pas de forme fermée. Cette constante était connue avec en 1998, en 2003 et jusqu'à en 2015.
Indépendance algébriqueEn algèbre, l'indépendance algébrique d'un ensemble de nombres, sur un corps commutatif, décrit le fait que ses éléments ne sont pas racines d'un polynôme en plusieurs indéterminées à coefficients dans ce corps. Soient L un corps commutatif, S un sous-ensemble de L et K un sous-corps de L. On dit que S est algébriquement libre sur K, ou que ses éléments sont algébriquement indépendants sur K si, pour tout suite finie (s, ... , s) d'éléments distincts de S et tout polynôme non nul P(X, ...
Kurt MahlerKurt Mahler, né le , à Krefeld, dans l'Empire allemand, et mort le , à Canberra, en Australie, est un mathématicien, membre de la Royal Society. Atteint de tuberculose à l'âge de cinq ans, ses problèmes de santé lui imposèrent plusieurs opérations (dont l'une le laissa infirme du genou droit) et le forcèrent à quitter l'école à treize ans, le poussant vers l'apprentissage. C’est donc en autodidacte qu'il s'assimila les bases de la trigonométrie, de la géométrie analytique et de l'analyse mathématique, par la lecture directe des ouvrages d’Edmund Landau, de David Hilbert ou de Felix Klein.
Fonction algébriqueEn mathématiques, une fonction algébrique d'indéterminées est une fonction F qui satisfait l'équation non triviale où P est un polynôme à n + 1 variables sur un corps commutatif K. En cela, F est une fonction implicite qui résout une équation algébrique. Un exemple simple serait La classe des fonctions algébriques contient toutes les fonctions rationnelles, mais est plus grande. Du point de vue de l'algèbre générale, il s'agit, pour tout ensemble fixé d'indéterminées, de la clôture algébrique du corps des fonctions rationnelles.
Roger ApéryRoger Apéry (Rouen, – Caen, ) est un mathématicien français de mère française et de père grec qui a effectué la plus grande partie de sa carrière à l'université de Caen. Il est principalement connu pour avoir démontré l'irrationalité de . Après des études au lycée Faidherbe de Lille et au lycée Louis-le-Grand, il est reçu second à l'École normale supérieure (ENS) en 1936. Quelques années plus tard il est premier (ex-aequo avec Jacqueline Ferrand) à l'agrégation de mathématiques.
Constante d'Euler-MascheroniEn mathématiques, la constante d'Euler-Mascheroni, ou constante d'Euler, est une constante mathématique définie comme la limite de la différence entre la série harmonique et le logarithme naturel. On la note usuellement (gamma minuscule). La constante d'Euler-Mascheroni γ est définie de la manière suivante : De façon condensée, on obtient : La constante peut également être définie sous la forme explicite d'une série (telle qu'elle fut d'ailleurs introduite par Euler) : La série harmonique diverge, tout comme la suite de terme général ln(n) ; l'existence de cette constante indique que les deux expressions sont asymptotiquement liées.
Pi (lettre grecque)Pi (capitale Π, minuscule π ou parfois π ; en grec πι) est la lettre de l'alphabet grec, précédée par omicron et suivie par rhô. Dérivée de la lettre pey x12px de l'alphabet phénicien, elle est l'ancêtre de la lettre P de l'alphabet latin et de la lettre П de l'alphabet cyrillique. En grec moderne, la lettre pi représente une consonne occlusive bilabiale sourde, . Cette valeur est en général également celle du grec ancien.