Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Logarithme naturelLe logarithme naturel ou logarithme népérien, ou encore logarithme hyperbolique jusqu'au , transforme, comme les autres fonctions logarithmes, les produits en sommes. L'utilisation de telles fonctions permet de faciliter les calculs comprenant de nombreuses multiplications, divisions et élévations à des puissances rationnelles. Il est souvent noté ln(). Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x.
Nombre algébriqueUn nombre algébrique, en mathématiques, est un nombre complexe solution d'une équation polynomiale à coefficients dans le corps des rationnels (autrement dit racine d'un polynôme non nul à coefficients rationnels). Les nombres entiers et rationnels sont algébriques, ainsi que toutes les racines de ces nombres. Les nombres complexes qui ne sont pas algébriques, comme π et e (théorème de Lindemann-Weierstrass), sont dits transcendants. L'étude de ces nombres, de leurs polynômes minimaux et des corps qui les contiennent fait partie de la théorie de Galois.
ExponentiationEn mathématiques, l’exponentiation est une opération binaire non commutative qui étend la notion de puissance d'un nombre en algèbre. Elle se note en plaçant l'un des opérandes en exposant (d'où son nom) de l'autre, appelé base. Pour des exposants rationnels, l'exponentiation est définie algébriquement de façon à satisfaire la relation : Pour des exposants réels, complexes ou matriciels, la définition passe en général par l'utilisation de la fonction exponentielle, à condition que la base admette un logarithme : L'exponentiation ensembliste est définie à l'aide des ensembles de fonctions : Elle permet de définir l'exponentiation pour les cardinaux associés.
Nombre constructibleUn nombre constructible (sous-entendu à la règle et au compas) est la mesure d'une longueur associée à deux points constructibles à la règle (non graduée) et au compas. Ainsi, est un nombre constructible, mais ni ni π ne le sont. C'est effectivement en termes de longueurs que pensaient les mathématiciens grecs et ceux qui, à leur suite, ont cherché à déterminer quels étaient les points et les nombres constructibles de cette façon.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
Nombre de LiouvilleEn mathématiques, et plus précisément en théorie des nombres, un nombre de Liouville est un nombre réel x ayant la propriété suivante :pour tout entier n, il existe des entiers q > 1 et p tels que 0 < |x – p/q| < 1/q ou, ce qui est équivalent : pour tout entier n et tout réel , il existe des entiers q > 0 et p tels que 0 < |x – p/q| < A/q. Un nombre de Liouville peut ainsi être approché « de manière très fine » par une suite de nombres rationnels.
Argument de la diagonale de Cantorvignette|Illustration de la diagonale de Cantor En mathématiques, l'argument de la diagonale, ou argument diagonal, fut inventé par le mathématicien allemand Georg Cantor et publié en 1891. Il permit à ce dernier de donner une deuxième démonstration de la non-dénombrabilité de l'ensemble des nombres réels, beaucoup plus simple, selon Cantor lui-même, que la première qu'il avait publiée en 1874, et qui utilisait des arguments d'analyse, en particulier le théorème des segments emboîtés.
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.