Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
Série harmoniqueEn mathématiques, la série harmonique est une série de nombres réels. C'est la série des inverses des entiers naturels non nuls. Elle tire son nom par analogie avec la moyenne harmonique, de la même façon que les séries arithmétiques et géométriques peuvent être mises en parallèle avec les moyennes arithmétiques et géométriques. Elle fait partie de la famille plus large des séries de Riemann, qui sont utilisées comme séries de référence : la nature d'une série est souvent déterminée en la comparant à une série de Riemann et en utilisant les théorèmes de comparaison.
Analyticity of holomorphic functionsIn complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Pôle (mathématiques)thumb|Représentation de la fonction avec deux pôles d'ordre 1, en z = et z = -. En analyse complexe, un pôle d'une fonction holomorphe est un certain type de singularité isolée qui se comporte comme la singularité en z = 0 de la fonction , où n est un entier naturel non nul. Une fonction holomorphe n'ayant que des singularités isolées qui sont des pôles est appelée une fonction méromorphe. Soient U un ouvert du plan complexe C, a un élément de U et une fonction holomorphe.
Règle de d'Alembertvignette|Jean Le Rond d'Alembert, mathématicien français. La règle de d'Alembert (ou critère de d'Alembert), doit son nom au mathématicien français Jean le Rond d'Alembert. C'est un test de convergence pour une série à termes positifs. Dans certains cas, elle permet d'établir la convergence absolue d'une série à termes complexes ou vectoriels, ou au contraire sa divergence. Soit (u) une suite de réels strictement positifs. On note et les limites inférieure et supérieure des quotients successifs : Si , alors la série de terme général u converge.
Fonction numériquevignette|Trois fonctions numériques représentant les précipitations, la température minimale et la température maximale au long de l'année à Brest En mathématiques, une fonction numérique est une fonction à valeurs réelles, c'est-à-dire qu'elle associe à toute valeur possible de ses variables un résultat numérique. Le terme est souvent employé pour désigner une fonction réelle d'une variable réelle, notamment dans l'enseignement secondaire, mais il recouvre aussi les notions de fonction de plusieurs variables ou de fonctions définies sur d’autres espaces topologiques comme les variétés différentiables, ou sur des structures discrètes comme les graphes.
Fonction transcendanteEn mathématiques, une fonction ou une série formelle est dite transcendante si elle n'est pas algébrique, c'est-à-dire si elle n'est pas solution d'une équation polynomiale à coefficients polynomiaux par rapport à ses arguments. Cette notion est donc, au même titre que celle de nombre transcendant, un cas particulier de celle d'élément transcendant d'une algèbre sur un anneau commutatif, l'algèbre et l'anneau considérés étant ici soit les fonctions de certaines variables (à valeurs dans un anneau commutatif R) et les fonctions polynomiales en ces variables (à coefficients dans R), soit les séries formelles et les polynômes (en une ou plusieurs indéterminées).