Motion (geometry)In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term motion is a synonym for surjective isometry in metric geometry, including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners. Motions can be divided into direct and indirect motions.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Quadrangle completEn géométrie plane, un quadrangle complet (parfois, simplement quadrangle) est la figure formée par quatre points A, B, C et D, tels que trois quelconques d'entre eux ne soient pas alignés : ce sont les sommets du quadrangle. Les six droites joignant ces points deux à deux sont les côtés du quadrangle. Deux côtés qui n'ont pas de sommet en commun sont dits opposés. Deux côtés opposés (non parallèles) ont un point commun appelé point diagonal du quadrangle.
Système de SteinerEn mathématiques, et plus particulièrement en combinatoire, un système de Steiner (nommé ainsi d'après Jakob Steiner) est un type de design combinatoire. Plus précisément, un système de Steiner de paramètres t, k, n, noté S(t,k,n), est constitué d'un ensemble S à n éléments, et d'un ensemble de sous-ensembles de S à k éléments (appelés blocs), ayant la propriété que tout sous-ensemble de S à t éléments est contenu dans un bloc et un seul (cette définition moderne généralise celle de Steiner, demandant en plus que k = t + 1).